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Second-order phase transition in a system with weak 
asymmetry coupling to a non-ordering parameter 

Ya’akov Achiam 
Department of Mathematical Physics, The University of Birmingham, PO Box 363, 
Birmingham B15 2TT, UK 

Received 19 September 1977, in final form 17 October 1977 

Abstract. Renormalisation group methods are used to analyse a phenomenological model 
of fluids with a coupling to a non-ordering parameter y, which is asymmetric with respect 
to the order parameter. The correlation function of y is studied above and below T,. The 
critical isochore is found to have a singular term of the order IT- TCl3’+*, in addition to a 
shift in the critical field and the critical order parameter. 

In every real system undergoing a phase transition there exists a coupling of the order 
parameter (S) to other degrees of freedom which would not be critical by themselves. 
The critical behaviour of these non-ordering parameters (NP) is a source of in- 
formation about the behaviour of s, the critical indices and the interactions between S 
and NP. However, extraction of such information from an experiment can be done 
only.after pre-study of the appropriate models. In this letter we present a model for 
the coupling between the polarisation of the molecules and S, in binary mixtures and 
liquid-gas transitions. These systems, having polar and non-polar components, are the 
subject of current research (Hocken et a1 1976, Givon et a1 1974). We hope that the 
result we obtain can help in the analysis of experiments which are carried out in 
similar systems. 

We assume that the systems we are interested in can be represented by a lattice- 
gas model. One can define a polarisation field yi and a projection operator (1 + S i ) / 2  
which describes the occupation of the i site. The additional energy due to the 
polarisation can be written approximately as Xi , j  (Si + l)yi(Si + l)yP The trans- 
formation to continuum fields will cause the appearance of an asymmetric interaction 
term of the form j x  S(x)y2(x) ddx in the Hamiltonian X. This term is added to the 
usual Landau-Ginzburg Hamiltonian (Wilson and Kogut 1974). A similar term was 
already included in X by Siggia et al (1976) who presented a model of binary mixtures 
and liquid-gas transitions in which y is the transverse vector field corresponding to the 
momentum density. 

The Hamiltonian appearing in the partition function 2 which we discuss is 

-X = ddx (~(VS)’ + t rS2  + us4 - hS + i y 2  + VY ’S). 
Jn 

The first four terms are the Landau-Ginzburg-Wilson Hamiltonian of a d (  = 4 - E )  

dimension system with a volume R. t and U are the usual parameters (Wilson and 
Kogut 1974) and h is an external field. The last two terms describe the bare Gaussian 
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contribution of the NP, and the interaction term which was already discussed. The 
renormalisation group (RG) analysis of X shows that the first five terms are the only 
relevant ones. The interaction term is irrelevant (in the RG sense). Any other term, 
not included in X, is more irrelevant. 

The first physical quantities we are interested in are the NP susceptibility, xy, and 
the y-y correlation function at momentum q, r:. To find xy, one has to add a NP field 
term, E y ( x ) ,  to X and perform 8' In Z/8E2. y can be shifted and integrated out by 
Gaussian integration. The resultant parameters in the effective' Hamiltonian depend 
on E'. Thus the critical temperature, field and (S) will be shifted proportional to E'. 
We have here an example of a system showing dT,(E)/dE = 0 at E = 0. From general 
arguments (Fisher 1968, Wegner 1975, Achiam and Imry 1975) one can expect a 
Itll-" singularity, where t = T - T, and a is the specific heat index. In this particular 
coupling of NP a stronger singularity, It JB, appears below T, (B is the coexistence curve 
index). 

The technique just described cannot work for the calculation of r;. This can be 
evaluated by using a standard RG technique like the matching procedure which will be 
described briefly at the end of this letter. This analysis to order u 3  - O(e3") (one loop 
order) reveals that r; is independent of q. As a result, the scaling law relating the 
singular terms of T;(T = T,) and r;"(T- T,) is not satisfied. We note that in other 
coupling of NP (Achiam and Imry 1975, Achiam 1977) such a scaling law is usually 
found. 

Explicitly, we found: 

( U )  T > Tc: xy - 1 + D+t'-"'; 
( b )  T < T,: xy - 1 + D;(-t)'-" - D ; ( - c ) ~  -D;(-t)ZB, where a = 2 -dv = 4 6  

The ratios of the amplitudes are: D+/D;  = A + / A -  where A* are the amplitudes of 
the specific heat C = A*ltl-", t + *O, (D;)2A-/D; = (1 -a)22B(8~*) where U* is the 
fixed point of U, U* = c/(36K4)+O(k2). 

Our next problem is to find how the asymmetric coupling of the NP affects the 
critical behaviour of S. Again, one can perform a Gaussian integration of y in 2. This 
procedure creates an effective Hamiltonian Re,. Its parameters -H, R and W, the 
coefficients of U = S -(S), u2 and u3 respectively, are related to the original ones as 
follows: R = i-2Cz, W =4um +4/3C3 and H = l - 6 ,  where m = (S), ti = 
u/(l+2um), i=r+12um2 and /;=h-rm-4um3. Xeff has the same form as the 
'ideal' (U = 0) king Hamiltonian in the presence of a magnetic field (Brtzin et a1 1973, 
Rudnick and Nelson 1976, Achiam and Kosterlitz 1977). As a consequence, the 
critical behaviour of S remains 'ideal' except for the following shifts in the critical 
values of the thermodynamic quantities: 

+O(a2) and p =t-a/6+O(aZ). 

mc= -u3/(3u*) AT, = 2u2 hc= u. 

The combination A=AT,h,/m, has to O(a) a universal value, A=-e/(6K4). The 
parameters of X (or Xes) enter into the thermodynamic functions (e.g. equation of 
state) via a combination called scaling fields. These are quantities which scale with a 
pure exponent under RG. If the combinations of U with the other parameters of X, as 
found in the parameters of X e ~ ,  are the same as those entering into the scaling fields, 
the shifts in h,, AT, and m,, which were mentioned above, would be the only effects of 
the NP. However, that does not have to be the case, and indeed it is not. Then, if one 
were to integrate y from 2 at the 1 stage of RG, corrections to the new effective 
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parameters would be necessary in order to have the scaling fields. These corrections 
are equivalent to singular contributions to th'e critical values of the thermodynamic 
quantities. It is not difficult to see that in our approximations the only singularity can 
be found in h,. The correction to the scaling fields can enter only through v which 
does not appear in the ideal Hamiltonian. The m, is already O(v3). Correction to it 
will be of higher order. But in h, which is O(u), corrections may be found. Indeed, the 
RG calculations of the equation of state show 

h, = vo - [z- 4(1+ 2K4/d)]K4~it*~ where f$h = 3p + S 
(6 = 3 + E  + O(eZ), K4 = 1/8.rr2). This is a very small singularity which satisfies 
Griffiths' inequality: 4 h  3 2 - (a + 8) (Griffiths 1965). As was already mentioned, 
mc(t) is a straight line. Mermin and Rehr (1971, and references therein) argued that if 
the tangent to the coexistence curve at the critical point of a liquid-gas transition is not 
parallel to the temperature or field axes, the singularity of m,(t) is at least Itl'-". This 
singularity has not been found yet experimentally (Levelt Sengers and Chen 1972). 
Our model does not satisfy the preliminary conditions on the tangent. Hence the 
missing singularity of mc(t) is not a surprise. However, it is not impossible that 
analysis to high orders will reveal such a singularity. 

To end this letter, we shall discuss briefly the RG calculations which led us to the 
above results. The recursion relations (RR) which the parameters of XI obey are thus 
of the ideal system (Rudnick and Nelson 1976) to which the contributions of v are 
added, the RR of t, and the scaling of y. The solutions of these RR to order o3 (one 
loop expansion) are: 

PI =++ V" = p o  (fixes the rescaling of y )  

t , ~  +4K4v: = VI = VO exp(A,l) 

mi + K4 V ? / 1 2 ~ *  =MI =MO exp(A,l), 

6-12u*M:+6K4u*-K4~.?/2=t1=toexp(AJ) At=2-€/3  

A, = - ( 1 - ~ / 2 )  

A m  = -A, 

$1 + t&fl + ~ u M : - ~ K ~ u * M  - K ~ / ~ v I  + (4 + 8K4/d)K4~: +&v:/u* 

=Hi = Ho eXp(Ahl) A h  = pa/ V. 

Two remarks should be mentioned at this point. 
(i) These are the solutions which are linear in rl. Although we should iterate them 

up to rf - 0(1), the non-linearity in r only causes slight changes in the definition of the 
scaling field which cancelled in the calculation of thermodynamic quantities (see 
discussion by Achiam and Kosterlitz 1977). 

(ii) By comparing the results for m,, h, and AT from the scaling fields and from 
Xeff, one can find disagreement by a factor K4/d. This is due to the particular shape of 
the Brillouin zone we work with, and is not significant. 

We used the 'matching procedure' in the framework of RG. (More details 
concerning this technique can be found in Achiam and Kosterlitz (1977), Rudnick and 
Nelson (1976) and references therein.) Starting with X one may generate a sequence 
of XI, similar to 2, by integrating out a, and y, with 1 > 4 >e-' which appear in 
2. Then the 4, a, and y, are rescaled: 41 = e'4, a, = l(l)uil, y, = c(l)y& such as to keep 
X, in similar form to X. rY and ry(l) are calculated in X and 21, respectively. They 
are related via ry  = c2( l )  exp(-dl)ry (l). We calculated xy(L) when i (L)+  42- 1. This 
condition (Nelson 1976) serves as an infrared cut-off, and enables us to calculate xy(L) 
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by the Dyson equation, The leading singularity in c exp(-dl/2) is exp(-2pl/v). 
However, this singularity cancelled out in the calculation of r,,. Only the If/'-'' 
singularity is found, resulting from an energy-like term. 

From the condition (a) = 0 evaluated using perturbation expansion at the L stage 
of RG we found mL =f(HL). Using the RR we obtained the equation of state. 

We conclude with a remark on the role of other transients in the above model. All 
the RG calculations were performed at the fixed point of U = U*. If the initial U is not 
at its fixed-point value, we expect very slow transients, typical of the crossover 
between the Gaussian and Ising fixed points. The above treatment can be generalised 
easily to this case in a similar way to that done by Rudnick and Nelson (1976). It 
results in more complicated scale functions. The second transient is the one from the 
term a'. We assume an ideal symmetric model. Hence such a parameter is of order 
os, and can be neglected. However, one has to remember that it has a transient which 
decays similarly to u ( l ) .  A term a5 was found in a liquid-gas transition by Hubbard 
and Schofield (1972). It is reasonable to suppose that it creates corrections to h, and 
m, similar to those found here, but such an analysis is beyond the scope of the present 
work. 

We are grateful to Y Imry who suggested the above model. We wish to thank J M 
Kosterlitz, D J Thouless, M E Fisher and A Aharony for illuminating discussions. 
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